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Temporal multiscaling in hydrodynamic turbulence
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On the basis of the Navier-Stokes equations, we develop the high Reynolds number statistical theory of
different-time, many-point spatial correlation functions of velocity differences. We find that their time depen-
dence isnot scale invariantn-order correlation functions exhibit infinitely many distinct decorrelation times
that are characterized by anomalous dynamical scaling exponents. We derive exact scaling relations that bridge
all these dynamical exponents to the static anomalous expotigmisthe standard structure functions. We
propose a representation of the time dependence using the Legendre-transform formalism of multifractals that
automatically reproduces all the newly found bridge relationship$063-651X%97)12406-0

PACS numbes): 47.27.Gs, 47.27.Jv, 05.40;

[. INTRODUCTION over time of higher-order different-time many-point spatial
correlation function of velocity differences.

Experimental investigations of the statistical objects that The aims of this short paper are to initiate an analytic
characterize the small-scale structure of turbulent flows aréheory of such correlation functions, to find their scaling
almost invariably based on a single-point measurement gfroperties, to introduce their dynamical scaling exponents,
the velocity fieldu(r,t) as a function of timg1-4]. The and to relate them to objects that are known from standard
Taylor “frozen turbulence” hypothesis is then used to sur-experiments. Finally we will propose a representation of the
rogate time for space. The results of this type of measuretime correlation functions in terms of the Legendre-
ments are “simultaneous” correlation of the velocity field transform formalism of multifractals. This representation
itself or of velocity differences across a scdte(structure  will turn out to be of crucial importance for the evaluation of
functions, or of velocity gradient fields like the dissipation the scaling exponents in turbulence from first principles. We
field. A theoretical analysis which starts with the Navier-rely on the equations of fluid mechanics, without recourse to
Stokes equations, on the other hand, states unequivocalyd hocmodels. In Sec. Il we review briefly the equations of
that a closed-form theory for the simultaneous many spacenotion in the Belinicher-L'vov representation, and introduce
point correlation functions of velocity differences is not and compute some typical time scales that are associated
available: attempting to derive equations for simultaneousvith n-point correlation functions. In Sec. Ill we show that
correlation functions one finds integrals over time differ- these results show that the correlation functions are not scale
ences of space-time correlation and response funcflehs invariant in their time argument. On the other hand, they
There are no small parameters like a ratio of time scé@es exhibit temporal multiscaling for any non-Kolmogoréwe.,
in turbulent advectior{6]) or a small interactionllike in  anomalousstatic scaling theory. Finally, in Sec. IV we offer
weak turbulenc¢?]) that allow a reduction of such a theory a useful representation of the time correlation functions in
to a closed scheme in terms of simultaneous objects only. Ikerms of the Legendre-transform formalism, and point to the
any theory that attempts to compute the scaling exponents ¢bad ahead.
simultaneous correlation functions from first principles, one
faces the computation of integrals over time of products of
many-time correlation functions. It is important therefore to
address different-time correlation functions for the sake of
the fundamental theory of Navier-Stokes turbulence. In considering the decorrelation times of different-time,

In addition, different time correlation functions appear in many-point spatial correlation functions, we need to make a
the theory of turbulent advectiofB,9]. For example, the choice of which velocity field we take as our fundamental
“eddy diffusivity” h;;(R) in the case of Gaussian, rapidly fie|d. The Eulerian velocity fieldi(r,t) will not do, simply
varying velocity field is a time integral over correlation func- pecause its decorrelation time is dominated by the sweeping
tion of the Lagrangian  velocity  difference of small scales by large scale flows. In RE&] we showed
W(r,r" to|t) = V(r',tolt) = V(r,to|t) [6]: that at least from the point of view of the perturbative theory

one can dispose of the sweeping effect using the Belinicher-
o L'vov (BL) velocity field v(rq,to|r,t) whose decorrelation
hij(f—f')Ef dr(Wi(r,r’,07)W;(r,r',00)) , (1)  time is intrinsic to the scale of consideration. In terms of the
0 . . .
Eulerian velocityu(r,t) the BL velocity v(rq,to|r,t) was
defined ag10]
where( ) denotes averaging over a space-homogeneous, sta-
tionary ensemble. The theory of advection by more realistic
velocity fields calls for a knowledge of additional integrals v(rotolr,t)=ulr+p, (ro.tolt).t] , 2)

II. EQUATIONS OF MOTION
AND DECORRELATION TIMES
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where p (rq,to|t) is the Lagrangian trajectory of the fluid 0F, o({R;},7)
icle positi iy at ti i g T Pap{Rb D= T (R} 1)
particle positioned at point, at timet,. The observations of dr n,pA LS np\UN T/
Belinicher and L’vov was that the variable$rg,t|r,t) sat-
isfy a Navier-Stokes-like equation in the limit of incompress- P R
ible fluid, and that their simultaneous correlators are identical D, (R}, D=2 (Wi LW, W), (8
to the simultaneous correlators ofr,t). In this sense these =1
variables are more convenient than Lagrangian velocities b
V(r,to|t)zu.[r+pL(r,t(.)|t),t which do not satisfy a closed- Jn,p({Rj}aT):VE (V12+V’j2)(W1- W W),
form equation of motion. j=1
Introduce now a difference of tw@imultaneousBL ve- A .
locities at pointg andr’: with EJ-EC(rO,tO|r]- ,rj’ ,t). We remember thal; W is a
nonlocal object that is quadratic in BL velocity differences,
W(rg,to|r,r ) =v(rg,to|r,t) —v(rg,tor’,t).  (3)  cf. EQ.(5).
To understand the role of the various contributions in Eq.

The equation of motion folV can be calculated starting (8), we first note that in the limity—0 the term

from the Navier-Stokes equation for the Eulerian field, Jhp({Rj},7) vanishes. To see this, note that in the fully
unfused case this term is bounded from above by

9 . ) ) Can,p({Rj},O)/Rzmm, whereC is a v-independent constant
1 TLT VRV W tolrr’,)=0. (4 andRy, is the minimal separation between the coordinates.

There is nothing in this quantity to balaneein the limit
v—0. This is of course the advantage of working with fully
unfused quantities; we could not do this with the balance
- - equation for fused correlator§say structure functions
L(ro,to|r,r",t)=PWI(ro,to|r,10,1)- V; S,(R)] in which the dissipative term reaches a finite limit
+ B WIro bl so,t) - V7, 5) \évggn Cvzcr)];;gus forv—0, or for very large Reynolds num-

We introduced an operatdt=L(rg,to|r,r',t),

whereP is the usual transverse projection operator which is 0Fn ({R}, D37+ Dy p({R;}, 7)=0. 9
formally written asP =—V 2VxVX. The application of

B to any given vector fielda(r) is nonlocal, and it has the Next we note that the terr, ({R;},7) contains an inte-
form gration over all space because of the projection operator Eg.

(6). The analysis of this integral calls for the use of “fusion

- _ _ _ rules” [11] that determine the asymptotic properties of
[Pa(r)],= f drP,g(r—r)ag(r). (6) many-point spatial correlation functions when a group of co-
ordinates fuse together. When the dummy integration vari-

The explicit form of the kernel can be found, for example inableT comes close to one of the coordinates in the correla-
Ref.[1]. In Eq. (5), P and P’ are projection operators which tion function, we use the fusion rules of correlation functions

act on fields that depend on the corresponding coordinate&ith one pair of coalescing coordinates, and wherx all
r andr’. The equation of motiori4) forms the basis of the the other coordinates are coalesced together compared to this
following discussion of the time correlation functions. coordinate. Knowing the asymptotic properties via the fusion
The fundamental statistical quantities in our study are théules, we can prove a very important result, i.e., that the
different-time, many-point, “fully unfused,’n-rank-tensor  integral in D, ,({R;},7) which originates from the projec-
correlation function of the BL velocity differences tion operator converges in the infrared and ultraviolet re-
W,=WI(ro,tolrjr] t): gimes. The proof of convergence was discussed in [Ré&f,
but due to its importance for the present development we
/ / reproduce it in Appendix A. Here we draw the important
Falfotolrarata - Fof ta) =(Wa - Wh). - (@) coFr)chusions: the pc:%nvergence of the integral megns that
_ 3 when all the separationEjErj—rj’ are of the same order
A. Two-time quantities R, the largest contribution to the integral comes from the
We begin the development with the simplest nonsimultategion wherer is separated bi from all the coordinates. In
neous case in which there are two different times in&y.  other words, since the integral convergesifezR as well as
Choosetj =t+ 7 for everyi<p andt;=t for everyi>p. We ¢, Ts.p and since the integrand is a scale invariant func-

will denote the correla.tion function with this choice of times tion of its argumenthaving no characteristic scale besides
as F; p({Rj},7), denoting for brevity the rest of the separa- gy we can evaluate it as soeindependent constant times

tions as{Rj}. The 7 derivative ofFy p is the integral obtained from putting~R in the integrand.

IF, (R}, 1) & When this is done the integrand can be evaluated as

— Wi ———-- 'Wn>. Fnr1p+1({Rj}, 7)/R. As a result one can easily prove that
dr =1 at there exist two constants; andC, such that

Using the equation of motiot¥), we find CiFni1p+1/RSDy o(1)<CoF 1 1p41/R. (10
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Scaling wise, D, (1R}, 7) ~ Fr+1p+1({R}, 7)/R. We will P ptg . A
show now that this result has far-reaching consequences for Dﬁ{’éq)= E > (W LW LW - W),
the dynamical exponents. j=1k=p+1

Introduce the typical decorrelation tim’ern,p(R) that is , ,
associated with the onetime difference quantityon the right-hand side of Eq16), we neglected two terms

Foo({Ri},7) when allR; are of the order oR: Egat \z?g'_?hT in the limit »—0. The expression fc.)r'_
np.q({Rj},71,72) contains two space integrals that origi
L o nate from the two projection operators which are hidden in
Tn,p(R)= fo d7Fn p (IR} T/ Fn p({R1,0). (D) L; and L. Using the same ideas when all the separations
are of the order oR we can estimate with impunity
Integrate Eq.(9) in the interval (Ox), use evaluatior{10),
and derive Dhpq{R} 71,72 ~ Friapr1g+ 1{R} 71, 72) IR

17
1Tn+1,p+1(R)~R:Fn,p({Rj}io)/:Fn+1,p+1({Rj}iO)- ) ) ) )
Now integrating Eq.(16) over 7 and 7, in the interval
. ] ] [ —,0], and remembering that the simultaneous correlation
In this equation7=0, and we have the simultaneous corre-fynctions of the BL and Eulerian velocities coincifiend
lation functions 7, 5({R;},0) of BL velocity differences thereforeF, , ,({R;},0,0)~S,(R)], we find
. . . ! . . n,p,q J S ’
which are identical [5] to the corresponding simultaneous

correlation functions of Eulerian velocity differences, and 2, R)~RVS(R)/S...(R)«R¥+22 (18
therefore 7, ,({R;},0)~ S,(R). We see that from the point n+zp+1a+1(R) n(R)Sne2(R) 18

of view of scaling there is np dependence in this equation: ag pefore, the scaling exponent &f, o.q(R) are indepen-

for different values ofp, only the coefficients can change. yent ofp andg, and we find that .

We thus can use the value
1Tn(R)~RS1,1(R)/SH(R)OCRZ”’1 (13) Zn,2:1+(§n—2_gn)/2 (19)

which is different from Eq(14). We see that the naive ex-

pectation is not realized. The difference between the two

we introduced the dynamical scaling expongfi that char- scaling exponentsy 1=z ,=¢n-1~({n*¢n-2)/2 is zero

acterizes this time scale. In terms of the scaling exponents G for linear scaling, meaning that in that case the naive
the structure functionsS,(R)~Rén, we can write the expectation that the time scales are identical is correct. On

“bridge relations” _the othg_r hand, f_or the S|tl_Jat|on of muInscaImg_the Hoelder
inequalities require the difference to be positive. Accord-

for the estimate of the decorrelation tinjlenyp(R) of a one-
time-difference correlation function for any value mfHere

Z01=1+ 01— & (14) ingly, for R<L, we ha\(ernyz(R)>rln,1(R). .
' We can proceed with correlation functiods, that de-
These are the first results of this paper. pend on m time differences. Denoting this as
fn,plypz...pm({Rj},rr -~ Tm) We establish the exact scaling
B. Three and more time quantities law for its decorrelation timé“rn‘pl,pz...pm(R). Integrating

Next we ask whether the same time scale also Characteme correlation functions over all ith different-time argu-
izes correlation functions having two or more time separaments, and normalizing by the simulataneous object, we ob-
tions. To this aim consider next the three-time quantity thatain an estimate for thmth power of the decorrelation time.
is obtained from F, by choosingt,=t+r, for i<p, ﬁcoordingly we can define the decorrelation time
t,=t+ 7, for p<i<p+q, andt,=t for i>p+qg. We denote ' Tn,p,.p, - -p,(R) @s
this quantity asF, , ,({R;},71,7,). We define the decorre-
lation time 27,, , , of this quantity by Fodry - draFnp oy (R T 7)) 7

f%chldefn,p,q.({Rj}le7'2) v 15 Fopy.py - o 1R1,0.0---0) 20
Fnp.a{R;}.0,0

27'n,p,q(R)E

One could think naively that this decorrelation time is of the Repeating the steps described above, we need taneiee
same order a7, (R); see Eq(13). The calculation leads to derivative from definition(7), and obtain the analog of Eq.

a different result. To see this calculate the double derivativé16)- Intégrating ovem times, we will find the analog of Eq.
of Fpp.q{R},71,72) With respect tor; and 7,. We begin (17), but the index of the correlation function on the right-

with definition (7), and compute directly the two time deriva- nand side will be raised by, ton+m. Accordingly, we find
tives with respect ta, and r,. This results in a new balance that the dynamical scaling exponent of the- nth-order cor-

equation. For the fully unfused situation, and in the limit relation function scales k&(Sh(R)/Sh+m(R)Y™. In terms
»—0. we find of the dynamical exponer, ., of the nth-order correlation

function that characterizes, ,, (when all the separations are
&zfn’p’q({Rj},7'1,72)/&7'1(97'24— Dy p.q=0, (16) of the order ofR), and 7, ,=R*m, we find

where nowD,, , o= Dh p ({Rj},71,72), and Zym=1+({h-m—¢n)/Mm, n—-ms2 . (21)
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These are also results of this paper, generalizing (E4). For a scale invariant function like EqR2) we expect to
One can see, using the Hoelder inequalities, thaf is a  find thatz{¥/k is k independent, as can be easily seen from
nonincreasing function af for fixed n, and in a multiscal-  substituting Eq(22) into Eq. (23). Clearly, relation(27) is
ing situation they are decreasing. The meaning is that thk independent only in the case of linear scaling, but any
largerm is thelongeris the decorrelation time of the corre- nonlinear dependence 4f, on n ruins thek independence.
sponding m+1 time correlation function, 7, ,(R) We learn from an analysis of the moments that there is no
>7,4(R) for p<q. We conclude therefore with a set of single typical time which characterizes thedependence of
scaling relations21) that indicate that, on the one hand, the 7, ({R},7). There is no simple “dynamical scaling expo-
dynamical scaling properties are very nontrivial, and, on thenent” z that can be used to collapse the time dependence in
other hand, all the dynamical scaling exponents can be comhe form F, ,({R},7) ~Réf(7/R?). Even the two-time cor-
puted from the knowledge of the scaling exponeft®f the  relation function is not a scale-invariant objedn this re-
structure functions. The latter result follows from the fusionspect it is similar to the probability distribution function of
rules that render the integrals in the interaction terms localthe velocity differences across a sc&gfor which the spec-
trum of £, is a reflection of the lack of scale invariance.
IIl. BREAKDOWN OF “DYNAMICAL SCALING”

. . . . V. TEMPORAL MULTISCALING REPRESENTATION
The fundamental idea of temporal scale invariance is that

a quantity like 7, ,({R},t) is characterized by dynamical This section does not introduce new results, but offers a
scaling exponent, such that convenient presentation of the time dependence of the corre-
lation functions. For concreteness we restrict the description

Fap(AREN) =N F, (R} 1), (220 to the n-point two-time correlation functiorF, ,({R;},7),

) ) ) and will further assume that all the separatiéjsare of the
where{,, is the standard “static” scaling exponent. Results same orderR. Consider first the simultaneous function
(21 indicate that our correlation functions do not exhibit &= o({Rj},7=0). Following the standard ideas of multifrac-

such temporal scale invariance. To see this in another wayg|s[2,14] the simultaneous function can be represented as
we consider higher-order temporal moments of the one-time-

difference correlation functiong, ,({R;},7) defined by Pmax R\ Z(n.h)
j:n,p({R}ﬂ':O)NUnfh - du(h) f) (28)
K) fE)OdT Tkilfn,p({Rj}vT) min
Th(R)= : (23 o _ | _
’ Fnp({Ri},0) HereU is a typical velocity scale, and the functigi{n,h) is
defined as

The intuitive meaning o {)(R) is ak-order decorrelation

momentof F, ,({R;},7) whose dimension igtime) K. The Z(n,h)=nh+3-D(h). (29
first-order decorrelation momeﬂ[ff,))(R) is the previously _
defined decorrelation timér, ,. To find the scaling expo- The functionD(h) is related to the scaling exponerdisvia
nents of these quantities we start with E8), multiply by ~ the usual Legendre transformation

7, and integrate over in the interval (Ox). Using evalua- )

tion (10) and assuming convergence of the integrals aver {n=minZ(n,h). (30
we derive h

" 1 e As usual, the integral in Eq28) is computed in the limit
_kf y:n]ka—ldTN ﬁJ -7"n+1,p+17kd7. (24) R/L_.’O via thg steepest. descent method. Neglecting loga-
0 0 rithmic corrections, one finds tha, ,({R},0)x Rén,

The physical intuition behind representati28) is that
where we have integrated by parts on the left-hand side. Wehere are velocity field configurations that are characterized
stress that in deriving this equation we assert kvl mo- by different scaling exponents. For different orders the
ments exist; this is not knowa priori. Using definition(23),  main contribution comes from that valuelothat determines
for all the separations of the order Bf we find the recur-  the position of the saddle point in integai). This intuition

rence relation is extended to the time domain. The particular velocity con-
o 1 figurations that are characterized by an exporeatso dis-
RS(R)TH)~S (R TH T 1. (25  play a typical time scaleg , which is written as
The solution(up to thep-dependent coefficiehts R/L\M
RN~ G R (32)

THO (R~ THI(R)=R¥S, | (R)/Sy(R) (26)
Accordingly we propose a new temporal multiscaling repre-
for k<n—2. The procedure does not yield information aboutsentation for the time-dependent function,
higherk values. Thus, for the scaling exponents of the deco-
rrelation moments we find

Z(n,h)
fn,p<{R},T>~U”fhhfaxdu<h>(E) fgw(L).

min TR,h

(k)
TOR)=RN , 2 =K+ {n k= Ln=Kznk.  (27) (32)
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The scaling functionsf(P(7/7z) are chosen with the nonlinear terms in the equations of motion:
boundary conditionf(’(0)=1, and such that the Melin »V?=W(R)/R. Again “weak" refers to the reminder that
transformmP)(&) exists, we are only allowed to use these substitutions for scaling
purposes within the average. Note that our weak dissipative
o [ 1o~ similarity rule is weaker than the Kolmogorov refined simi-
my (§)=f0 ™ty (ndr, (33 Jarity hypothesis which states theynamical relationship
(VW(R))>~W3R. Note that both our rules are derived

whereT is a dimensionless variable. from first principles.

To see that this representation reproduces the scaling re- Finally, we .ShOU|d ask v_vhether the_ results .presented
lations (27), all that we need is to compute the Melin trans- above are particular to the time correlation function of BL
form of }-' : velocity differences, or do they reflect intrinsic scaling prop-

n,p-

erties that are shared by other dynamical presentations like
w ~ ~ the standard Lagrangian velocity fields. The answer is that

M%J)({R},f)ff 1 F, p({RLTRIUYAT, (34 the results are general; all that we have used are the property
0 of convergence of the interaction integrals, and the fact that

where here the dimensionless dummy variable is chosen dBe simultaneous correlation functions of the BL fields are
~_ o . . the same as those of the Eulerian velocities. These properties
7=7U/R. Substituting Eq(32) into Eq.(34), computing the also hold for Lagrangian velocities, and in fact for any sen-

integral over}_ first, and performing the saddle point integral sjpje choice of velocity representation in which the sweeping
of n(h), we find that effect is eliminated. Accordingly we state that the dynamical
® el exponent are invariant to the representation and in particular
M (1R}, )< RET 0. (35 will be the same for many-time correlation functions of La-

For the cas& =k we recover, comparing definitiqi23) with grangian velocity differences.

Eq. (34), the scaling relation§27). ACKNOWLEDGMENTS
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be represented in terms of infinitely many dynamical scaling
exponents for everyi-order correlation function. All these  AppENDIX: LOCALITY OF THE INTERACTION TERM
exponents are expressed in terms of the scaling exponents
£, of the standard structure functio®(R). In a succinct To prove the convergence of the interaction term in Eqg.
way the temporal multiscaling is represented by &9). (9), we note that it is sufficient to prove the convergence of
Another simple way to remember all the scaling relationsthe integral when the the correlation functi@d, ,({R;}, 7)
that were obtained above is given by the following Simp|eis replaced in the integrand by the simultaneous correlation
rule. To obtain the dynamical scaling exponent, every intefunction D,({R;}). The reason is that the latter is always
gral over 7 in the definition of the decorrelation timg0), larger or equal to the former, so the convergence of the in-
and every factorr in the definition of moment§23) can be  tegral over the simultanous correlation function guarantees
traded for a factor oR/W within the averagef the corre- the convergence of the integral over the time corrlation func-
lation function involved. The dynamical exponent is deter-tion. We remember that we deal with the most general con-
mined by the resulting scaling exponents of the resultindiguration of coordinates in which all then2coordinates;
simultaneous correlation function. and rj’ are different, but we specialize the discussion to the
The deep reason behind the temporal multiscaling and thisase in which all the(2n—1) separations are of the same
simple rule is the nonperturbative locali(gonvergenceof  order of magnitude, which we designate RyWe will show

the integrals appearing i, . Because of this locality one that the integral over appearing in Eq(9) but with D,, as
can estimate from the equation of motion4) the integrand is “local” in the following sense. First it con-
Ur~aldar~W-V~W(R)/R. This means that we can use verges in the “ultraviolet” limit. This limit has to be con-
the substitutionsr, fd7=R/WW(R) as long as we use them gjqered when(i) T—0, (i) when ¢;—T) becomes very
within the averageand when all the separations are of the ;j5se to any of the 8— 1 coordinatesjother than, and(iii)
order of R. We propose to refer to this substitution rule as\hen (rj’ —r) becomes very close to any of th@2 1 coor-

weak dynamical similarity,” where “weak” is a_remmder dinates other than . Second, it converges in the “infrared”
that the rules can be usexhly under the averaging proce- !

dure, andonly for scaling purposes. The same property ofimit when r —co. The idea for the proof of these properties
locality of the interaction integrals was shoy3,17 to lies !n_the use of the fusion rules which were presened in
yield another set of bridge relations between scaling expodetail in Refs[11,12.

nents of correlation functions of gradient fields and the scal-
ing exponents,,. Those relations can be summarized by
another substitution rule that we refer to as “weak dissipa- To demonstrate the convergence of the integraDinin

tive similarity;” it follows from equating the viscous and the ultraviolet region we can consider any term from the sum

1. Ultraviolet convergence
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on j. Writing u,(r;—r)=(Zg_u,(r;—r))/n, we write one
of thek terms in the sum. The integral that appears is of the
form

r>>R

1 d
-2 ArP 1) (Wi ()W (1= )
, , FIG. 1. Typical geometry witm—1 velocity differences in a

XWpg(rj— rr— r-- 'Wan(rn ) - (A1) ball of radiusR on the left separated by a large distangeR from

. . N a pair of points on the right.
As the coordinate is being integrated over, the most dan-

gerous ultraviolet contribution comes from the region of ) o
smallr. In this region the projection operator can be evalu-tyPical term(Al). The relevant geometry is shown in Fig. 1.

ated as TP. Other coalescence eventsrofvith other coor- There is one velocity difference across the coordinates
dinates contribute less divergent integrands since the projeé;—r andr —r (which is shown on the right of the figure
tion operator does not become singular. Whebecomes n—1 velocity differences across coordinates that are all
small, there are two possibilitie@) rj#r, and(ii) rj=r,. In  within a ball of radiusR (at the left of the figurg and one
the first case the correlation function itself is analytic in thevelocity difference across the large distamoghich is much
region r—0, and we can expand it in a Taylor serieslarger thanR. In the notation of this figure the leading order
const-B-r+---, whereB is anr-independent vector. The contribution for larger is obtained from the fusion rules
constant term is annihilated by the projection operator. Th¢11,17 with the following evaluation for the leading term:
term linear inr vanishes under thdr integration due to
r——r symmetry. The next term which is proportional to . R 2[R\ 41
r? is convergent in the ultraviolet. In the second case we focrfnea| == | : (A2)
have a velocity difference across the lengthAccordingly
we need to use the fusion rul@1,17, and learn that the
leading contribution is proportional t2. This is not suffi-  On the face of it, this term is near dangerous. Rdil scal-
cient for convergence in the ultraviolet if the derivative with ing ther dependence cancels, and the integral is logarithmi-
respect tor; could be evaluated asrlivhenrj=r,. How-  cally divergent. For anomalous scaling the integral con-
ever, if we take into account the tensor structur&gf, we  verges sincef,,,1<¢,_1+¢, due to Hoelder inequalities.
see that this dangerous contribution vanishes. AccordinglyThis convergence seems slow. However, the situation is in
the derivative is evaluated as the inverse of the distance bgact much safer. If we take into account the precise form of
tweenr; and the nearest coordinate in the correlation functhe second-order structure function in the fusion rules we
tion, leading to convergence in the ultraviolet. find that the divergence with respectrtdranslates in fact to
aSé”(Rj)/&Rjy which is zero due to incompressibility. The
next-order term is convergent even for simpked(l) scaling.

To understand the convergence®¥, when the integra- This completes the proof of locality of the interaction term in
tion variabler becomes very large we can consider again theeqg. (9).

2. Infrared convergence
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