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Temporal multiscaling in hydrodynamic turbulence
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On the basis of the Navier-Stokes equations, we develop the high Reynolds number statistical theory of
different-time, many-point spatial correlation functions of velocity differences. We find that their time depen-
dence isnot scale invariant:n-order correlation functions exhibit infinitely many distinct decorrelation times
that are characterized by anomalous dynamical scaling exponents. We derive exact scaling relations that bridge
all these dynamical exponents to the static anomalous exponentszq of the standard structure functions. We
propose a representation of the time dependence using the Legendre-transform formalism of multifractals that
automatically reproduces all the newly found bridge relationships.@S1063-651X~97!12406-0#

PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.1j
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I. INTRODUCTION

Experimental investigations of the statistical objects t
characterize the small-scale structure of turbulent flows
almost invariably based on a single-point measuremen
the velocity fieldu(r,t) as a function of time@1–4#. The
Taylor ‘‘frozen turbulence’’ hypothesis is then used to su
rogate time for space. The results of this type of measu
ments are ‘‘simultaneous’’ correlation of the velocity fie
itself or of velocity differences across a scaleR ~structure
functions!, or of velocity gradient fields like the dissipatio
field. A theoretical analysis which starts with the Navie
Stokes equations, on the other hand, states unequivo
that a closed-form theory for the simultaneous many spa
point correlation functions of velocity differences is n
available: attempting to derive equations for simultane
correlation functions one finds integrals over time diffe
ences of space-time correlation and response functions@5#.
There are no small parameters like a ratio of time scales~as
in turbulent advection@6#! or a small interaction~like in
weak turbulence@7#! that allow a reduction of such a theor
to a closed scheme in terms of simultaneous objects only
any theory that attempts to compute the scaling exponen
simultaneous correlation functions from first principles, o
faces the computation of integrals over time of products
many-time correlation functions. It is important therefore
address different-time correlation functions for the sake
the fundamental theory of Navier-Stokes turbulence.

In addition, different time correlation functions appear
the theory of turbulent advection@8,9#. For example, the
‘‘eddy diffusivity’’ hi j (R) in the case of Gaussian, rapid
varying velocity field is a time integral over correlation fun
tion of the Lagrangian velocity differenc
W(r,r8,t0ut)5V(r8,t0ut)2V(r,t0ut) @6#:

hi j ~r2r8![E
0

`

dt^Wi~r,r8,0ut!Wj~r,r8,0u0!& , ~1!

where^ & denotes averaging over a space-homogeneous,
tionary ensemble. The theory of advection by more reali
velocity fields calls for a knowledge of additional integra
551063-651X/97/55~6!/7030~6!/$10.00
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over time of higher-order different-time many-point spat
correlation function of velocity differences.

The aims of this short paper are to initiate an analy
theory of such correlation functions, to find their scalin
properties, to introduce their dynamical scaling expone
and to relate them to objects that are known from stand
experiments. Finally we will propose a representation of
time correlation functions in terms of the Legendr
transform formalism of multifractals. This representati
will turn out to be of crucial importance for the evaluation
the scaling exponents in turbulence from first principles. W
rely on the equations of fluid mechanics, without recourse
ad hocmodels. In Sec. II we review briefly the equations
motion in the Belinicher-L’vov representation, and introdu
and compute some typical time scales that are associ
with n-point correlation functions. In Sec. III we show th
these results show that the correlation functions are not s
invariant in their time argument. On the other hand, th
exhibit temporal multiscaling for any non-Kolmogorov~i.e.,
anomalous! static scaling theory. Finally, in Sec. IV we offe
a useful representation of the time correlation functions
terms of the Legendre-transform formalism, and point to
road ahead.

II. EQUATIONS OF MOTION
AND DECORRELATION TIMES

In considering the decorrelation times of different-tim
many-point spatial correlation functions, we need to mak
choice of which velocity field we take as our fundamen
field. The Eulerian velocity fieldu(r,t) will not do, simply
because its decorrelation time is dominated by the swee
of small scales by large scale flows. In Ref.@5# we showed
that at least from the point of view of the perturbative theo
one can dispose of the sweeping effect using the Belinich
L’vov ~BL! velocity field v(r0 ,t0ur,t) whose decorrelation
time is intrinsic to the scale of consideration. In terms of t
Eulerian velocityu(r,t) the BL velocity v(r0 ,t0ur,t) was
defined as@10#

v~r0 ,t0ur,t ![u@r1r
L
~r0 ,t0ut !,t# , ~2!
7030 © 1997 The American Physical Society
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55 7031TEMPORAL MULTISCALING IN HYDRODYNAMIC TURBULENCE
where r
L
(r0 ,t0ut) is the Lagrangian trajectory of the flui

particle positioned at pointr0 at timet0. The observations o
Belinicher and L’vov was that the variablesv(r0 ,t0ur,t) sat-
isfy a Navier-Stokes-like equation in the limit of incompres
ible fluid, and that their simultaneous correlators are ident
to the simultaneous correlators ofu(r,t). In this sense these
variables are more convenient than Lagrangian veloci
V(r,t0ut)[u@r1r

L
(r,t0ut),t which do not satisfy a closed

form equation of motion.
Introduce now a difference of two~simultaneous! BL ve-

locities at pointsr and r8:

W~r0 ,t0ur,r8,t ![v~r0 ,t0ur,t !2v~r0 ,t0ur8,t !. ~3!

The equation of motion forW can be calculated startin
from the Navier-Stokes equation for the Eulerian field,

F ]

]t
1L̂2n~¹ r

21¹ r8
2!GW~r0 ,t0ur,r8,t !50. ~4!

We introduced an operatorL̂5L̂(r0 ,t0ur,r8,t),

L̂~r0 ,t0ur,r8,t ![PJW~r0 ,t0ur,r0 ,t !•¹r

1PJ8W~r0 ,t0ur8,r0 ,t !•¹r8, ~5!

wherePJ is the usual transverse projection operator which
formally written asPJ [2¹22¹3¹3. The application of
PJ to any given vector fielda(r) is nonlocal, and it has the
form

@PJa~r!#a5E d r̃Pab~r2 r̃ !ab~ r̃ !. ~6!

The explicit form of the kernel can be found, for example,
Ref. @1#. In Eq. ~5!, PJ andPJ8 are projection operators whic
act on fields that depend on the corresponding coordin
r and r8. The equation of motion~4! forms the basis of the
following discussion of the time correlation functions.

The fundamental statistical quantities in our study are
different-time, many-point, ‘‘fully unfused,’’n-rank-tensor
correlation function of the BL velocity difference
Wj[W(r0 ,t0ur j r j8 ,t j ):

Fn~r0 ,t0ur1r18 ,t1•••rnrn8 ,tn!5^W1•••Wn&. ~7!

A. Two-time quantities

We begin the development with the simplest nonsimu
neous case in which there are two different times in Eq.~7!.
Chooset i5t1t for everyi<p andt i5t for everyi.p. We
will denote the correlation function with this choice of time
asFn,p($Rj%,t), denoting for brevity the rest of the separ
tions as$Rj%. The t derivative ofFn,p is

]Fn,p~$Rj%,t!

dt
5(

j51

p KW1•••
]Wj

]t
•••WnL .

Using the equation of motion~4!, we find
-
al

s

s

es

e

-

]Fn,p~$Rj%,t!

dt
1Dn,p~$Rj%,t!5Jn,p~$Rj%,t!,

Dn,p~$Rj%,t!5(
j51

p

^W1•••L̂jWj•••Wn&, ~8!

Jn,p~$Rj%,t!5n(
j51

p

~¹ j
21¹8 j

2!^W1•••Wj•••Wn&,

with L̂j[L̂(r0 ,t0ur j ,r j8 ,t). We remember thatL̂jWj is a
nonlocal object that is quadratic in BL velocity difference
cf. Eq. ~5!.

To understand the role of the various contributions in E
~8!, we first note that in the limit n→0 the term
Jn,p($Rj%,t) vanishes. To see this, note that in the fu
unfused case this term is bounded from above
CnJn,p($Rj%,0)/Rmin

2 , whereC is a n-independent constan
andRmin is the minimal separation between the coordinat
There is nothing in this quantity to balancen in the limit
n→0. This is of course the advantage of working with ful
unfused quantities; we could not do this with the balan
equation for fused correlators@say structure functions
Sn(R)# in which the dissipative term reaches a finite lim
whenn→0. Thus forn→0, or for very large Reynolds num
bers, we have

]Fn,p~$Rj%,t!/]t1Dn,p~$Rj%,t!50. ~9!

Next we note that the termDn,p($Rj%,t) contains an inte-
gration over all space because of the projection operator
~6!. The analysis of this integral calls for the use of ‘‘fusio
rules’’ @11# that determine the asymptotic properties
many-point spatial correlation functions when a group of c
ordinates fuse together. When the dummy integration v
able r̃ comes close to one of the coordinates in the corre
tion function, we use the fusion rules of correlation functio
with one pair of coalescing coordinates, and whenr̃→` all
the other coordinates are coalesced together compared to
coordinate. Knowing the asymptotic properties via the fus
rules, we can prove a very important result, i.e., that
integral inDn,p($Rj%,t) which originates from the projec
tion operator converges in the infrared and ultraviolet
gimes. The proof of convergence was discussed in Ref.@12#,
but due to its importance for the present development
reproduce it in Appendix A. Here we draw the importa
conclusions: the convergence of the integral means
when all the separationsRj[r j2r j8 are of the same orde
R, the largest contribution to the integral comes from t
region wherer̃ is separated byR from all the coordinates. In
other words, since the integral converges forr̃ !R as well as
for r̃ @R, and since the integrand is a scale invariant fun
tion of its argument~having no characteristic scale besid
R) we can evaluate it as someR-independent constant time
the integral obtained from puttingr̃ 'R in the integrand.
When this is done the integrand can be evaluated
Fn11,p11($Rj%,t)/R. As a result one can easily prove th
there exist two constantsC1 andC2 such that

C1Fn11,p11 /R<Dn,p~t!<C2Fn11,p11 /R. ~10!
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7032 55L’VOV, PODIVILOV, AND PROCACIA
Scaling wise,Dn,p($Rj%,t);Fn11,p11($Rj%,t)/R. We will
show now that this result has far-reaching consequence
the dynamical exponents.

Introduce the typical decorrelation time1tn,p(R) that is
associated with the one-time difference quant
Fn,p($Rj%,t) when allRj are of the order ofR:

1tn,p~R![E
0

`

dtFn,p~$Rj%,t!/Fn,p~$Rj%,0!. ~11!

Integrate Eq.~9! in the interval (0,̀ ), use evaluation~10!,
and derive

1tn11,p11~R!;RFn,p~$Rj%,0!/Fn11,p11~$Rj%,0!.
~12!

In this equation,t50, and we have the simultaneous corr
lation functionsFn,p($Rj%,0) of BL velocity differences
which are identical @5# to the corresponding simultaneou
correlation functions of Eulerian velocity differences, a
thereforeFn,p($Rj%,0);Sn(R). We see that from the poin
of view of scaling there is nop dependence in this equation
for different values ofp, only the coefficients can chang
We thus can use the value

1tn~R!;RSn21~R!/Sn~R!}Rzn,1 ~13!

for the estimate of the decorrelation time1tn,p(R) of a one-
time-difference correlation function for any value ofp. Here
we introduced the dynamical scaling exponentzn,1 that char-
acterizes this time scale. In terms of the scaling exponent
the structure functions,Sn(R);Rzn, we can write the
‘‘bridge relations’’

zn,1511zn212zn. ~14!

These are the first results of this paper.

B. Three and more time quantities

Next we ask whether the same time scale also chara
izes correlation functions having two or more time sepa
tions. To this aim consider next the three-time quantity t
is obtained fromFn by choosing t i5t1t1 for i<p,
t i5t1t2 for p, i<p1q, andt i5t for i.p1q. We denote
this quantity asFn,p,q($Rj%,t1 ,t2). We define the decorre
lation time 2tn,p,q of this quantity by

2tn,p,q~R![S *0
`dt1dt2Fn,p,q~$Rj%,t1 ,t2!

Fn,p,q~$Rj%,0,0!
D 1/2. ~15!

One could think naively that this decorrelation time is of t
same order as1tn(R); see Eq.~13!. The calculation leads to
a different result. To see this calculate the double deriva
of Fn,p,q($Rj%,t1 ,t2) with respect tot1 and t2. We begin
with definition~7!, and compute directly the two time deriva
tives with respect tot1 andt2. This results in a new balanc
equation. For the fully unfused situation, and in the lim
n→0, we find

]2Fn,p,q~$Rj%,t1 ,t2!/]t1]t21Dn,p,q50, ~16!

where nowDn,p,q5Dn,p,q($Rj%,t1 ,t2), and
for

-

of

r-
-
t

e

Dn,2
~p,q!5(

j51

p

(
k5p11

p1q

^W1•••L̂jWj•••L̂kWk•••Wn&.

On the right-hand side of Eq.~16!, we neglected two terms
that vanish in the limit n→0. The expression for
Dn,p,q($Rj%,t1 ,t2) contains two space integrals that orig
nate from the two projection operators which are hidden
L̂j and L̂k . Using the same ideas when all the separatio
are of the order ofR we can estimate with impunity

Dn,p,q~$Rj%,t1 ,t2!;Fn12,p11,q11~$Rj%,t1 ,t2!/R
2.

~17!

Now integrating Eq.~16! over t1 and t2 in the interval
@2`,0#, and remembering that the simultaneous correlat
functions of the BL and Eulerian velocities coincide@and
thereforeFn,p,q($Rj%,0,0);Sn(R)#, we find

2tn12,p11,q11~R!;RASn~R!/Sn12~R!}Rzn12,2. ~18!

As before, the scaling exponent of2tn,p,q(R) are indepen-
dent ofp andq, and we find that

zn,2511~zn222zn!/2 ~19!

which is different from Eq.~14!. We see that the naive ex
pectation is not realized. The difference between the t
scaling exponentszn,12zn,25zn212(zn1zn22)/2 is zero
only for linear scaling, meaning that in that case the na
expectation that the time scales are identical is correct.
the other hand, for the situation of multiscaling the Hoeld
inequalities require the difference to be positive. Acco
ingly, for R!L, we havetn,2(R)@tn,1(R).

We can proceed with correlation functionsFn that de-
pend on m time differences. Denoting this a
Fn,p1 ,p2•••pm

($Rj%,t1•••tm) we establish the exact scalin

law for its decorrelation timemtn,p1 ,p2•••pm(R). Integrating

the correlation functions over all itsm different-time argu-
ments, and normalizing by the simulataneous object, we
tain an estimate for themth power of the decorrelation time
Acoordingly we can define the decorrelation tim
mtn,p1 ,p2•••pm(R) as

S *0
`dt1•••dtmFn,p1 ,p2•••pm

~$Rj%,t1•••tm!

Fn,p1 ,p2•••pm
~$Rj%,0,0•••0! D 1/m.

~20!

Repeating the steps described above, we need to takem time
derivative from definition~7!, and obtain the analog of Eq
~16!. Integrating overm times, we will find the analog of Eq
~17!, but the index of the correlation function on the righ
hand side will be raised bym, to n1m. Accordingly, we find
that the dynamical scaling exponent of them1nth-order cor-
relation function scales likeR„Sn(R)/Sn1m(R)…

1/m. In terms
of the dynamical exponentzn,m of the nth-order correlation
function that characterizestn,m ~when all the separations ar
of the order ofR), andtn,m}Rzn,m, we find

zn,m511~zn2m2zn!/m , n2m<2 . ~21!
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These are also results of this paper, generalizing Eq.~14!.
One can see, using the Hoelder inequalities, thatzn,m is a
nonincreasing function ofm for fixed n, and in a multiscal-
ing situation they are decreasing. The meaning is that
largerm is the longer is the decorrelation time of the corre
sponding m11 time correlation function, tn,p(R)
@tn,q(R) for p,q. We conclude therefore with a set o
scaling relations~21! that indicate that, on the one hand, t
dynamical scaling properties are very nontrivial, and, on
other hand, all the dynamical scaling exponents can be c
puted from the knowledge of the scaling exponentszn of the
structure functions. The latter result follows from the fusi
rules that render the integrals in the interaction terms loc

III. BREAKDOWN OF ‘‘DYNAMICAL SCALING’’

The fundamental idea of temporal scale invariance is
a quantity likeFn,p($R%,t) is characterized by adynamical
scaling exponentz, such that

Fn,p~$lR%,lzt !5lznFn,p~$R%,t !, ~22!

wherezn is the standard ‘‘static’’ scaling exponent. Resu
~21! indicate that our correlation functions do not exhib
such temporal scale invariance. To see this in another w
we consider higher-order temporal moments of the one-ti
difference correlation functionsFn,p($Rj%,t) defined by

T n,p~k! ~R![
*0

`dt tk21Fn,p~$Rj%,t!

Fn,p~$Rj%,0!
. ~23!

The intuitive meaning ofT n,p(k) (R) is ak-order decorrelation
momentof Fn,p($Rj%,t) whose dimension is~time! k. The
first-order decorrelation momentT n,p(1)(R) is the previously
defined decorrelation time1tn,p . To find the scaling expo-
nents of these quantities we start with Eq.~9!, multiply by
tk, and integrate overt in the interval (0,̀ ). Using evalua-
tion ~10! and assuming convergence of the integrals ovet,
we derive

2kE
0

`

Fn,pt
k21dt;

1

RE0
`

Fn11,p11t
kdt, ~24!

where we have integrated by parts on the left-hand side.
stress that in deriving this equation we assert thatk11 mo-
ments exist; this is not knowna priori. Using definition~23!,
for all the separations of the order ofR we find the recur-
rence relation

RSn~R!T n,p~k! ;Sn11~R!T n11,p11
~k11! . ~25!

The solution~up to thep-dependent coefficient! is

T n,p~k! ~R!;T n~k!~R!5RkSn2k~R!/Sn~R! ~26!

for k<n22. The procedure does not yield information abo
higherk values. Thus, for the scaling exponents of the de
rrelation moments we find

T n~k!~R!}Rzn
~k!
, zn

~k!5k1zn2k2zn5kzn,k . ~27!
e

e
-

l.

at

y,
e-

e

t
-

For a scale invariant function like Eq.~22! we expect to
find thatzn

(k)/k is k independent, as can be easily seen fro
substituting Eq.~22! into Eq. ~23!. Clearly, relation~27! is
k independent only in the case of linear scaling, but a
nonlinear dependence ofzn on n ruins thek independence.
We learn from an analysis of the moments that there is
single typical time which characterizes thet dependence of
Fn,p($R%,t). There is no simple ‘‘dynamical scaling expo
nent’’ z that can be used to collapse the time dependenc
the formFn,p($R%,t);Rznf (t/Rz). Even the two-time cor-
relation function is not a scale-invariant object. In this re-
spect it is similar to the probability distribution function o
the velocity differences across a scaleR, for which the spec-
trum of zn is a reflection of the lack of scale invariance.

IV. TEMPORAL MULTISCALING REPRESENTATION

This section does not introduce new results, but offer
convenient presentation of the time dependence of the co
lation functions. For concreteness we restrict the descrip
to the n-point two-time correlation functionFn,p($Rj%,t),
and will further assume that all the separationsRj are of the
same orderR. Consider first the simultaneous functio
Fn,p($Rj%,t50). Following the standard ideas of multifrac
tals @2,14# the simultaneous function can be represented

Fn,p~$R%,t50!;UnE
hmin

hmax
dm~h!SRL D Z~n,h!

. ~28!

HereU is a typical velocity scale, and the functionZ(n,h) is
defined as

Z~n,h![nh132D~h!. ~29!

The functionD(h) is related to the scaling exponentszn via
the usual Legendre transformation

zn5min
h
Z~n,h!. ~30!

As usual, the integral in Eq.~28! is computed in the limit
R/L→0 via the steepest descent method. Neglecting lo
rithmic corrections, one finds thatFn,p($R%,0)}Rzn.

The physical intuition behind representation~28! is that
there are velocity field configurations that are characteri
by different scaling exponentsh. For different ordersn the
main contribution comes from that value ofh that determines
the position of the saddle point in integral~28!. This intuition
is extended to the time domain. The particular velocity co
figurations that are characterized by an exponenth also dis-
play a typical time scaletR,h which is written as

tR,h'
R

US LRD h. ~31!

Accordingly we propose a new temporal multiscaling rep
sentation for the time-dependent function,

Fn,p~$R%,t!;UnE
hmin

hmax
dm~h!SRL D Z~n,h!

f n
~p!S t

tR,h
D .

~32!
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The scaling functionsf n
(p)(t/tR,h) are chosen with the

boundary conditionf n
(p)(0)51, and such that the Melin

transformmn
(p)(j) exists,

mn
~p!~j ![E

0

`

t̂j21f n
~p!~ t̂ !dt̂, ~33!

wheret̂ is a dimensionless variable.
To see that this representation reproduces the scaling

lations ~27!, all that we need is to compute the Melin tran
form of Fn,p :

Mm
~p!~$R%,j![E

0

`

t̂j21Fn,p~$R%,t̂R/U !dt̂, ~34!

where here the dimensionless dummy variable is chose
t̂[tU/R. Substituting Eq.~32! into Eq.~34!, computing the
integral overt̂ first, and performing the saddle point integr
of m(h), we find that

Mm
~p!~$R%,j!}Rj1zn2j. ~35!

For the casej5k we recover, comparing definition~23! with
Eq. ~34!, the scaling relations~27!.

V. CONCLUSIONS

The main conclusion of this paper is that the stand
‘‘dynamical scaling’’ assumption fails for hydrodynamic tu
bulence. Instead, we have temporal multiscaling which
be represented in terms of infinitely many dynamical scal
exponents for everyn-order correlation function. All these
exponents are expressed in terms of the scaling expon
zn of the standard structure functionsSn(R). In a succinct
way the temporal multiscaling is represented by Eq.~32!.

Another simple way to remember all the scaling relatio
that were obtained above is given by the following simp
rule. To obtain the dynamical scaling exponent, every in
gral overt in the definition of the decorrelation time~20!,
and every factort in the definition of moments~23! can be
traded for a factor ofR/W within the averageof the corre-
lation function involved. The dynamical exponent is det
mined by the resulting scaling exponents of the result
simultaneous correlation function.

The deep reason behind the temporal multiscaling and
simple rule is the nonperturbative locality~convergence! of
the integrals appearing inDn . Because of this locality one
can estimate from the equation of motion~4!
1/t;]/]t;W•¹;W(R)/R. This means that we can us
the substitutionst,*dt⇒R/W(R) as long as we use them
within the average, and when all the separations are of t
order ofR. We propose to refer to this substitution rule
‘‘weak dynamical similarity,’’ where ‘‘weak’’ is a reminder
that the rules can be usedonly under the averaging proce
dure, andonly for scaling purposes. The same property
locality of the interaction integrals was shown@13,12# to
yield another set of bridge relations between scaling ex
nents of correlation functions of gradient fields and the sc
ing exponentszn . Those relations can be summarized
another substitution rule that we refer to as ‘‘weak dissi
tive similarity;’’ it follows from equating the viscous an
re-

as

d

n
g

nts

s

-

-
g

is

f

-
l-

-

nonlinear terms in the equations of motio
n¹2⇒W(R)/R. Again ‘‘weak’’ refers to the reminder tha
we are only allowed to use these substitutions for sca
purposes within the average. Note that our weak dissipa
similarity rule is weaker than the Kolmogorov refined sim
larity hypothesis which states thedynamical relationship
(¹W(R))2;W3/R. Note that both our rules are derive
from first principles.

Finally, we should ask whether the results presen
above are particular to the time correlation function of B
velocity differences, or do they reflect intrinsic scaling pro
erties that are shared by other dynamical presentations
the standard Lagrangian velocity fields. The answer is t
the results are general; all that we have used are the prop
of convergence of the interaction integrals, and the fact t
the simultaneous correlation functions of the BL fields a
the same as those of the Eulerian velocities. These prope
also hold for Lagrangian velocities, and in fact for any se
sible choice of velocity representation in which the sweep
effect is eliminated. Accordingly we state that the dynami
exponent are invariant to the representation and in partic
will be the same for many-time correlation functions of L
grangian velocity differences.
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APPENDIX: LOCALITY OF THE INTERACTION TERM

To prove the convergence of the interaction term in E
~9!, we note that it is sufficient to prove the convergence
the integral when the the correlation functionDn,p($Rj%,t)
is replaced in the integrand by the simultaneous correla
functionDn($Rj%). The reason is that the latter is alway
larger or equal to the former, so the convergence of the
tegral over the simultanous correlation function guarant
the convergence of the integral over the time corrlation fu
tion. We remember that we deal with the most general c
figuration of coordinates in which all the 2n coordinatesr j
and r j8 are different, but we specialize the discussion to
case in which all then(2n21) separations are of the sam
order of magnitude, which we designate byR. We will show
that the integral overr̃ appearing in Eq.~9! but withDn as
the integrand is ‘‘local’’ in the following sense. First it con
verges in the ‘‘ultraviolet’’ limit. This limit has to be con-
sidered when~i! r̃→0, ~ii ! when (r j2 r̃ ) becomes very
close to any of the 2n21 coordinates other thanr j , and~iii !
when (r j82r) becomes very close to any of the 2n21 coor-
dinates other thanr j8 . Second, it converges in the ‘‘infrared’

limit when r̃→`. The idea for the proof of these propertie
lies in the use of the fusion rules which were presened
detail in Refs.@11,12#.

1. Ultraviolet convergence

To demonstrate the convergence of the integral inDn in
the ultraviolet region we can consider any term from the s
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on j . Writing ug(r j2r)5„(k51
n ug(r j2r)…/n, we write one

of thek terms in the sum. The integral that appears is of
form

I5
1

nE drPa jb
~r!

]

]r jg
^wa1

~r1 ,r18!•••wg~r j2r,rk!

3wb~r j2r,r j82r!•••wan
~rn ,rn8!& . ~A1!

As the coordinater is being integrated over, the most da
gerous ultraviolet contribution comes from the region
small r . In this region the projection operator can be eva
ated as 1/r 3. Other coalescence events ofr with other coor-
dinates contribute less divergent integrands since the pro
tion operator does not become singular. Whenr becomes
small, there are two possibilities:~i! r jÞrk and~ii ! r j5rk . In
the first case the correlation function itself is analytic in t
region r→0, and we can expand it in a Taylor seri
const1B•r1•••, whereB is an r-independent vector. The
constant term is annihilated by the projection operator. T
term linear in r vanishes under thedr integration due to
r→2r symmetry. The next term which is proportional
r 2 is convergent in the ultraviolet. In the second case
have a velocity difference across the lengthr . Accordingly
we need to use the fusion rule@11,12#, and learn that the
leading contribution is proportional tor z2. This is not suffi-
cient for convergence in the ultraviolet if the derivative wi
respect tor j could be evaluated as 1/r when r j5rk . How-
ever, if we take into account the tensor structure ofF̃2

ab , we
see that this dangerous contribution vanishes. Accordin
the derivative is evaluated as the inverse of the distance
tweenr j and the nearest coordinate in the correlation fu
tion, leading to convergence in the ultraviolet.

2. Infrared convergence

To understand the convergence ofDn when the integra-
tion variabler becomes very large we can consider again
v

e

f
-

c-

e

e

y,
e-
-

e

typical term~A1!. The relevant geometry is shown in Fig.
There is one velocity difference across the coordina
r j2r and r j82r ~which is shown on the right of the figure!,
n21 velocity differences across coordinates that are
within a ball of radiusR ~at the left of the figure!, and one
velocity difference across the large distancer which is much
larger thanR. In the notation of this figure the leading orde
contribution for larger is obtained from the fusion rule
@11,12# with the following evaluation for the leading term:

I}r zn11SRj

r D z2SRr D
zn21

. ~A2!

On the face of it, this term is near dangerous. ForK41 scal-
ing ther dependence cancels, and the integral is logarith
cally divergent. For anomalous scaling the integral co
verges sincezn11<zn211z2 due to Hoelder inequalities
This convergence seems slow. However, the situation i
fact much safer. If we take into account the precise form
the second-order structure function in the fusion rules
find that the divergence with respect tor j translates in fact to
]S2

bg(Rj )/]Rjg which is zero due to incompressibility. Th
next-order term is convergent even for simple (K41) scaling.
This completes the proof of locality of the interaction term
Eq. ~9!.

FIG. 1. Typical geometry withn21 velocity differences in a
ball of radiusR on the left separated by a large distancer@R from
a pair of points on the right.
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